
API VERSIONING
THE TEN COMMANDMENTS OF

Sponsored by Rex Software

API VERSION DOGMA

ABOUT ME - JODIE

▸ Senior dev at REX Software working on the backend team

▸ I build API’s, micro services, and work on infrastructure

▸ Big focus on establishing and exploring API standards

▸ twitter.com/seriouslyjodie

Sponsored by Rex Software

http://twitter.com/seriouslyjodie

API VERSION DOGMA

GENESIS

▸ An API is created

▸ To production!

▸ Time to make some updates though

In the beginning the
ARCHITECT created the
perfect restful API

API VERSION DOGMA

EXODUS

▸ We want to make changes

▸ But we have have existing clients and consumers

▸ People probably aren’t using that endpoint anyway

▸ Maybe we could just sneak in a few changes

“Let my API be free”

YOU

API VERSION DOGMA

FIRST COMMANDMENT

▸ You have a CONTRACT with your consumers

▸ Yes, things change but it shouldn’t be a surprise

▸ When things change in a backwards-incompatible manner,
you need a new version

Thou shall not break your
consumers

API VERSION DOGMA

SECOND COMMANDMENT

▸ You should have a good reason to update your API

▸ Your clients may use your API in ways you can’t imagine

▸ If you make a breaking change, serve a new version

▸ Properties can be supplemented but not changed or
removed

Thou shalL not commit
breaking changes to your
API without versioning

API VERSION DOGMA

THIRD COMMANDMENT

▸ Decide on a versioning scheme right from the start

▸ Version via URL

▸ Version via Accept header

▸ Version via custom header

▸ Implement SEMVER major.minor.patch

You shall choose a
versioning scheme

API VERSION DOGMA

VERSIONING VIA URL

▸ 🙏 Easy to use - just give someone the URL

▸ 🙏 Bookmarking, navigable

▸ 🙏 Point it at a different branch

▸ Purists: “URL’s should represent the resource”

/v2/people

API VERSION DOGMA

VERSIONING VIA ACCEPT HEADER

▸ 🙏 Accept already used to negotiate content

▸ 🙏 IETF legitimised this approach in RFC4627

▸ 🙏 Semantically makes sense

▸ Less shareable

▸ Send back the same Content-Type

Accept:“application/vnd.myapp.v2+json"

Content-Type:“application/vnd.myapp.v2+json”

API VERSION DOGMA

VERSIONING VIA CUSTOM HEADER

▸ Same problems as Accept header

▸ Not a standard

▸ 🙏 More customisable (eg. Timestamp)

▸ Send back the same X-Api-Version

X-Api-Version:“1.0.0”

X-Api-Version:“1,0.0”

NO

API VERSION DOGMA

FOURTH COMMANDMENT

▸ Don’t just assume latest version for an un-versioned
request

▸ Give feedback

▸ HTTP Status Code (400)

▸ Application code: INVALID_API_VERSION

Invalid versions shall
throw errors

API VERSION DOGMA

FIFTH COMMANDMENT

▸ SEMVER: major.minor.patch

▸ Bug-fixes update patch

▸ Non-breaking features update minor

▸ Breaking changes update major

Implement semantic
versioning

API VERSION DOGMA

SEMVER

▸ Your clients can request a minor version

▸ You respond with a full version

▸ 🙏 Gives fine granularity

▸ Might be harder to maintain

X-Api-Version:“1.5”

X-Api-Version:“1.5.10”

Client

Server

API VERSION DOGMA

SIXTH COMMANDMENT

▸ Whatever you do, provide stability

▸ Be practical

▸ Establish processes; breaking changes, sunsetting

▸ Other arguments don't really matter: RESTful, semantic,
standards, URL sucks, headers are lame

Have a stable contract

That me

“Just delete your API right now, and start again.”

API VERSION DOGMA

SEVENTH COMMANDMENT

▸ CHANGELOG

▸ Version announcements

▸ Updated API documentation; Swagger, Blueprint etc

Changes shall be well
documented

API VERSION DOGMA

EIGHTH COMMANDMENT

▸ Who does API’s well?

▸ Look at others for inspiration; Stripe, Twilio Twitter

▸ Others have already gone through this torment before you

▸ Take what works and see if it applies to your API’s

You shall steal from thy
neighbour

API VERSION DOGMA

STRIPE

▸ Major versions use URL. Eg. /v1

▸ Server code can be remapped

▸ Accounts get pinned to the latest version at the time of
their first request

▸ Versions are encapsulated via a transformer, resource
types, and documentation

▸ Stripe-Version header is included with all responses

YES

API VERSION DOGMA

NINETH COMMANDMENT

▸ Don’t return your models/entities as is

▸ Use a transformation layer to manage changes between
versions

▸ Your API version can dictate what transformations are
applied

Transformations are godly

API VERSION DOGMA

TENTH COMMANDMENT

▸ … Unless you really have to

▸ API’s evolve

▸ Make your changes backwards-compatible

▸ Versioning is difficult

Thou shall not change your
api

