THE TEN COMMANDMENTS OF

' ‘ VERSIINING




APl VERSION DOGMA

ABOUT ME - JODIE

» Senior dev at REX Software working on the backend team
» | build APIl's, micro services, and work on infrastructure
» Big focus on establishing and exploring API standards

» twitter.com/seriouslyjodie

a
&

Sponsored by Rex Software


http://twitter.com/seriouslyjodie

APl VERSION DOGMA

IN THE BEGINNING THE
ARCHITECT CREATED THE
PERFECT RESTFUL API

» An APl is created
» To production!

» Time to make some updates though



APl VERSION DOGMA

EXODUS

“LET MY API BE FREE”

» We want to make changes
» But we have have existing clients and consumers
» People probably aren’t using that endpoint anyway

» Maybe we could just sneak in a few changes






APl VERSION DOGMA

FIRST COMMANDMENT

THOU SHALL NOT BREAK YOUR
CONSUMERS

» You have a CONTRACT with your consumers
» Yes, things change but it shouldn’t be a surprise

» When things change in a backwards-incompatible manner,
you need a new version



APl VERSION DOGMA

SECOND COMMANDMENT

THOU SHALL NOT COMMIT
BREAKING CHANGES TO YOUR
APl WITHOUT VERSIONING

» You should have a good reason to update your API
» Your clients may use your APl in ways you can’t imagine
» If you make a breaking change, serve a new version

» Properties can be supplemented but not changed or
removed



APl VERSION DOGMA

THIRD COMMANDMENT

YOU SHALL CHOOSE A
VERSIONING SCHEME

» Decide on a versioning scheme right from the start
» Version via URL

» Version via Accept header

» Version via custom header

» Implement SEMVER major.minor.patch



APl VERSION DOGMA

VERSIONING VIA URL

/v2/people

» A Easy to use - just give someone the URL
» A Bookmarking, navigable
» A Point it at a different branch

» Purists: “URL's should represent the resource”



APl VERSION DOGMA

VERSIONING VIA ACCEPT HEADER

Accept:“application/vnd.myapp.v2+json”

Content-Type:“application/vnd.myapp.v2+json”

» A Accept already used to negotiate content
» A IETF legitimised this approach in RFC4627
» A Semantically makes sense

» Less shareable

» Send back the same Content-Type



APl VERSION DOGMA

VERSIONING VIA CUSTOM HEADER

X-Api-Version:“1.0.0"
X-Api-Version:“1,0.0”

» Same problems as Accept header
» Not a standard
» A More customisable (eg. Timestamp)

» Send back the same X-Api-Version



LK

WHY/NOT,BOTH2

memeygenerator.net







APl VERSION DOGMA

FOURTH COMMANDMENT

INVALID VERSIONS SHALL
THROW ERRORS

» Don't just assume latest version for an un-versioned
request

» Give feedback
» HTTP Status Code (400)
» Application code: INVALID_API_VERSION



APl VERSION DOGMA

FIFTH COMMANDMENT

IMPLEMENT SEMANTIC
VERSIONING

» SEMVER: major.minor.patch
» Bug-fixes update patch
» Non-breaking features update minor

» Breaking changes update major



APl VERSION DOGMA

SEMVER

Client X-Api-Version:“1.5”
Server X-Api-Version:®“1.5.10"

» Your clients can request a minor version
» You respond with a full version
» A Gives fine granularity

» Might be harder to maintain



APl VERSION DOGMA

SIXTH COMMANDMENT

HAVE A STABLE CONTRACT

» Whatever you do, provide stability
» Be practical
» Establish processes; breaking changes, sunsetting

» Other arguments don't really matter: RESTful, semantic,
standards, URL sucks, headers are lame



“Just delete your API right now, and start again.”



APl VERSION DOGMA

SEVENTH COMMANDMENT

CHANGES SHALL BE WELL
DOCUMENTED

» CHANGELOG
» Version announcements

» Updated APl documentation; Swagger, Blueprint etc



APl VERSION DOGMA

EIGHTH COMMANDMENT

YOU SHALL STEAL FROM THY
NEIGHBOUR

» Who does APl's well?

» Look at others for inspiration; Stripe, Twilio Fwitter
» Others have already gone through this torment before you

» Take what works and see if it applies to your API's



APl VERSION DOGMA

STRIPE

» Major versions use URL. Eg. /v1

» Server code can be remapped

» Accounts get pinned to the latest version at the time of
their first request

» Versions are encapsulated via a transformer, resource
types, and documentation

» Stripe-Version header is included with all responses



BUTYOUSAID.







APl VERSION DOGMA

NINETH COMMANDMENT

TRANSFORMATIONS ARE GODLY

» Don't return your models/entities as is

» Use a transformation layer to manage changes between
versions

» Your API version can dictate what transformations are
applied



APl VERSION DOGMA

TENTH COMMANDMENT

THOU SHALL NOT CHANGE YOUR
AN o |

» ... Unless you really have to
» APl's evolve
» Make your changes backwards-compatible

» Versioning is difficult



