
Unicode and Ü
… things a web developer might want to know

Jodie Dunlop
Senior Backend Dev
Rex Software Pty Ltd
twitter.com/seriouslyjodie

https://twitter.com/seriouslyjodie

What is Unicode?

Defines a unique code for every character in every
language

Irrelevant of platform, program, or implementation

Punctuation marks, diacritics, symbols, arrows, and emoji are also defined

Scripts include the European alphabetic scripts, Middle Eastern right-to-left
scripts, and many scripts of Asia

U+0D27 U+0915 U+0284

Such as the english

language!

Unicode represents
a character in an
abstract way
and leaves the visual rendering (size,
shape, font, or style) to other software,
such as a web browser

128,172
In all, the Unicode Standard, Version 9.0 provides codes for 128,172 characters

from the world's alphabets, ideograph sets, and symbol collections.

More characters are usually added each release.

Example code block

Source: unicode-table.com

Example code block

Source: unicode-table.com

Example character

Source: unicode-table.com

ASCII & FRIENDS
A bR1ef h1st0ry in time before unicode ruled

Before the web ruined everything

Life was simple - we usually didn’t care about other languages

We had ASCII and if we needed some fancy characters we’d use ISO-8859-1 or
ANSI. Other characters? Other codepages!

Each character could fit nicely into 1 byte

No complex encoding, or mapping, a string is just a series of bytes which contain
characters

Japanese would be Japan’s problem, not ours...

ASCII

7 bits = 128 glorious characters used most frequently in US-English

We didn’t need no british pound symbol

Character operations are simple. Uppercase? Just switch the 6th bit (genius)

1 byte mapping makes memory access simple

Emoji? We call them emoticons and you can
 combine them in ways unimaginable

ASCII

Character Decimal Binary Hex

A 65 01000001 0x41

a 97 01100001 0x61

9 57 00111001 0x39

ASCII

ISO-8859-1 (aka Latin1, CP819, IBM819 ...)

Add 1 bit to ASCII and you get an 8-bit, single-byte encoding that
provides space for 128 additional characters

The british pound symbol is finally in! Plus 95 other symbols

Operations are still simple - working with a 1 byte to 1 character mapping

It’s not quite the same as Windows code page 1252 - more on that later

As of August 2016, 6.0% of all web sites claim to use ISO 8859-1

Additional characters from ISO-8859-1

ISO-8859-?

Actually there are a bunch of ISO-8859 definitions, not just ISO-8859-1

They all swap out the same range of characters (decimal 160-255)

Latin-1 (Western European languages)
Latin-2 (Non-Cyrillic Central and Eastern European languages)
Latin-3 (Southern European languages and Esperanto)
Latin-5 (Turkish)
Latin-6 (Northern European and Baltic languages)
8859-5 (Cyrillic)
8859-6 (Arabic)
8859-7 (Greek)
8859-8 (Hebrew) ...

Windows Codepage 1252

Uses the unused range of ISO-8859-1 (DECIMAL 128-159) to provide additional
characters

Sometimes referred to as “ANSI”

Gives you that nice dash that’s just a little bit
longer than a plain old hyphen

1252 is basically the reason we needed to add
“Paste from Word” to our web applications

–
DEC: 150

-
DEC: 45

Windows Codepage 1252

Before Unicode

Before unicode there were 100’s of different encoding systems - issues

No single encoding could contain enough characters (eg. European Union spans
many encodings)

The encoding systems would also conflict with each other. Eg. Two different
characters at the same address -OR- the same character defined in two different
places

Unsuitable for East-Asian languages requiring 1000’s codepoints

Does not cater for additional symbols

Back to Unicode

Unicode

So Unicode gives us a 21bit space U+0000..U+10FFFF to provide allocation for
over a million codepoints

Unicode only specifies the codepoint or the “number” to reference that character,
how that codepoint is represented on disk or in memory is a whole other story

The Unicode Space

Unicode allows for ~1.1million codepoints to be allocated across 17 “planes”

Each plane - 65,536 continuous characters (16 bits)

Basic Multilingual Plane (BMP) is the first plane and contains the character
assignments for most of the modern languages and common symbols

There are 3 supplementary planes, plus private use blocks across multiple planes

The other planes are sometimes referred to as: Astral Planes

The Unicode Space
Plane 0 Basic Multilingual Plane

(BMP)
U+0000 - U+FFFF

Plane 1 Supplementary Multilingual
Plane (SMP)

U+10000 - U+1FFFF

Plane 2 Supplementary Ideographic
Plane

U+20000 - U+2FFFF

Planes 3-13 Unassigned U+30000 - U+DFFFF

Plane 14 Supplement-ary
Special-purpose Plane
(SSP)

U+E0000 – ​U+EFFFF

Planes 15-16 Supplement-ary Private Use
Area planes (SPUA)

U+F0000 + U+10FFFF

BMP - Basic Multilingual Plane

The first plane plane 0 is called the Basic Multilingual Plane or BMP

It specifies the codepoint range U+0000 -> U+FFFF

It contains all the most commonly used symbols, english scripts, and many
modern languages

Most of the time you don’t need any code points outside of the BMP especially for
text documents in English. Just like any other Unicode plane, it groups about 65
thousand symbols

Encoding Formats

Unicode Transformation Format (UTF)

UTF specifies the encoding for a codepoint (eg. codepoint -> memory/storage)

UTF-8, UTF-16, and UTF-32 all provide different ways to encode a codepoint into
between 1 and 4 bytes

Only these encodings are part of the Unicode Standard - but there are many more

All interchangeable - no loss when converting between each

UTF-8

Variable width encoding from 1-4 bytes

Designed to be compatible with ASCII - the first 128 characters correspond 1:1
with ASCII

Therefore ASCII is also completely valid UTF-8

UTF-8 does not require BOM although it is sometimes present

Most common on the web, HTML5 mandates its use

UTF-8 Binary Encoding

Bytes Bits
For code point

First
code point

Last
code point

Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+0000 U+007F 0xxxxxxx

2 11 U+0080 U+07FF 110xxxxx 10xxxxxx

3 16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

1-4 bytes - first byte for characters in the ASCII range

Working with UTF-8 at the Byte Level

You have a single byte character if the first bit is a 0 (zero)

You know you have the first byte in a sequence if the first two bits are 11

If you have a byte that starts with 10, you will need to seek up to 3 bytes
backwards to find the start of the sequence

With this knowledge we can randomly seek and read 1 byte anywhere in a UTF-8
encoded file and know how to proceed

UTF-8 encoding of ASCII characters
Character Decimal Binary Hex

A
U+0041 65 01000001 0x41

A
U+0061 97 01100001 0x61

9
U+0039 57 00111001 0x39

Æ
U+006C 50054

11000011
10000110

0xC3
0x86

UTF-16

Variable width encoding that uses either 16 bits or 32 bits for all codepoints

All of the characters in the Basic Multilingual Plane (BMP) are encoded as a single
16-bit unit - thus most characters of most modern languages only use one code
unit

Other planes require two 16-bit units (32 bits) and we call this “surrogate pairs”

Used by Windows and Java for string/char storage

UTF-16

Characters U+0800 through U+FFFF use three bytes in UTF-8, but only two in
UTF-16

As a result, text in (for example) Chinese, Japanese or Hindi will take more space
in UTF-8 if there are more of these characters than there are ASCII characters

Comes in 2 forms UTF-16LE and UTF-16BE (Little Endian or Big Endian)

Not compatible with ASCII

UTF-32

32 bit (4 byte) encoding… 4 bytes for every character no matter which character

Fixed width makes codepoints directly indexable (Constant time operation)

Used by Linux and OSX for w_char (wide char) storage

Uses more memory than the other standards, but easier to address

Comes in 2 forms UTF-32LE and UTF-32BE (Little Endian or Big Endian)

Not compatible with ASCII

Bad luck
UTF-32

Little Endian
Big Endian

No,

they’re Native American’s

Little Endian & Big Endian Variations

UTF-16 and UTF-32 may be in LE (Little Endian) or BE (Big Endian) encoding

Big Endian means most significant byte first (normal)

Little Endian means least significant byte first (reverse)

Some computers are better at one or the other

Byte order mark (BOM) “can” be used to indicate LE or BE
… or specify the encoding through some other means

You must know which order it is encoded in!

Recap

UTF-8 is most common on the web, and potentially uses the least storage (1 byte)

UTF-16 is either 2 or 4 bytes, used by Java and Windows, and uses less storage
than UTF-8 when dealing with certain scripts. All characters in the BMP are 1 unit

UTF-8 and UTF-32 are used by Linux and various Unix systems

UTF-32 always uses 4 bytes but can be addressed more easily due to fixed width

The conversions between all of them are algorithmically based,
fast and lossless

Byte Order Mark (BOM)

Byte Order Mark (BOM) U+FEFF

An optional Unicode character which appears at the start of some text streams

Indicates that it a stream is in Unicode

Indicates the encoding (eg. UTF-8, UTF-16, UTF-32)

Indicates endianness (byte order)

If you specify your encoding through some other means then a BOM
is not necessary

Sometimes causes issues

Byte Order Mark (BOM) U+FEFF

The exact bytes comprising the BOM will be whatever
the Unicode character U+FEFF is converted into by
that transformation format

The BOM can be used to “sniff” the format of the file
or stream

If present in UTF-8 the BOM will always be the 3 bytes: EF BB BF

UTF-8 does not require a BOM and UTF-8 should always
ignore the BOM

Bytes Encoding Form

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

FE FF UTF-16, big-endian

FF FE UTF-16, little-endian

EF BB BF UTF-8

Unicode Equivalence
And normalization and stuff ...

Unicode Equivalence

Unicode sometimes has multiple representations for the same character

Ultimately they all represent the “same” character, but with different codepoints -
we call them equivalent

Sometimes these additional codepoints exist for historical reasons

Unicode provides rules around normalisation so that they can be transformed
and/or treated as the same character (eg. when comparing or alphabetising)

For Example

U+00C5 (Å) LATIN CAPITAL LETTER A WITH RING ABOVE

U+212B (Å) ANGSTROM SIGN

U+0041 (A) LATIN CAPITAL LETTER A + U+030A (̊) COMBINING RING ABOVE

All of the above are considered canonically equivalent

Each of these examples represent the same character

1. The first is the “precomposed” form
2. The second is an alternative codepoint called “Angstrom”
3. The last combines a character with a diactritic

http://unicode.org/cldr/utility/character.jsp?a=00C5
http://unicode.org/cldr/utility/character.jsp?a=212B
http://unicode.org/cldr/utility/character.jsp?a=0041
http://unicode.org/cldr/utility/character.jsp?a=030A

Normalisation

There are 4 forms of normalisation:

NFD
Normalization Form Canonical
Decomposition

Characters are decomposed by canonical
equivalence, and multiple combining
characters are arranged in a specific order.

NFC
Normalization Form Canonical Composition

Characters are decomposed and then
recomposed by canonical equivalence.

NFKD
Normalization Form Compatibility
Decomposition

Characters are decomposed by compatibility,
and multiple combining characters are
arranged in a specific order.

NFKC
Normalization Form Compatibility
Composition

Characters are decomposed by compatibility,
then recomposed by canonical equivalence.

Fonts

Fonts

The Unicode standard does not specify or create the font (typeface)

A font is a collection of graphical shapes (glyphs) that may include
representations of some of the unicode codepoints.

Since a single TTF or OTF font has a hard limit of 65535 there is no single font that
can cover the 1.1 million unicode characters - a family of fonts needs to be used

Fonts - Unicode in the browser

If the fonts referenced in the CSS do not cover a particular Unicode character then
the browser will use fallback fonts

By the specifications, browsers should display a character if there is any font in the system that contains it

Font fallback doesn’t always occur nicely (looking at you IE)

Using a font that has good coverage for your application is the ideal scenario

Or use SVG or images for particular instances

Fonts - Coverage

Google Noto Font - https://www.google.com/get/noto/
Provides massive coverage (goal is to cover all scripts) including emoji (android
style) and many scripts

DejaVu - http://dejavu-fonts.org/wiki/Main_Page
Good coverage of most common Unicode symbols and common scripts

GNU - Unifont - http://czyborra.com/unifont/ (Pixel font)
30,000+ characters in pixel format

https://www.google.com/get/noto/
http://dejavu-fonts.org/wiki/Main_Page
http://czyborra.com/unifont/

Fonts - Coverage

Wikipedia provide coverage tables for the various commonly installed fonts (Arial
etc.) which indicates which block ranges are included:

https://en.wikipedia.org/wiki/Unicode_font#0000-077F

https://en.wikipedia.org/wiki/Unicode_font#0000-077F

Emoji Ȋ ż ʚ
U+1F4A9 U+1F40D U+1F602

Emoji History

Originated in Japanese mobile phones in 1990’s

In 2010 the Unicode consortium integrated emoji into Unicode

There are over 1700 emoji including flags, keycaps, and modifier sequences

The word “emoji”, in fact, is just as Japanese as it sounds. It’s taken
from the Japanese words “e” (“picture”), and “moji” (“character”).

Emoji Definition

They are assigned code points just like other Unicode characters

Depicted as black and white pictographs within the Unicode standard

As with all Unicode characters, graphical representation is up to the software

Emoji are not the same as emoticons… but some emoticons include unicode
characters ಠ_ಠ

Emoji Examples

Actual implementations
differ within various
software

Emoji Skin Tones

In 2015 (Unicode 8.0) skin tones based on the Fitzpatrick scale were introduced

Many emoji such as people could be assigned up to 5 different shades by
combining a modifier character

When an emoji codepoint is present, if it is immediately followed by one of the
following codepoints: U+1F3FB, U+1F3FC, U+1F3FD, U+1F3FE, U+1F3FF - then if
the software supports it it should display the skin tone variation

Otherwise the patch colour block will be displayed individually
after the emoji character

Emoji Prince - U+1F934

The skin tone modifiers for the Prince (U+1F934) emoji character

Emoji

As seen from the example characters their codepoint is beyond U+FFFF

Emoji reside in the Supplementary Multilingual Plane (SMP) U+10000 - U+1FFFF

Since they are not available within the BMP (Basic Multilingual Plane) they will
take at least 2 bytes to encode in any of the UTF forms

Plane 1, the Supplementary Multilingual Plane (SMP), contains historic scripts such as Linear B, Egyptian
hieroglyphs, and cuneiform scripts; historic and modern musical notation; mathematical alphanumerics;
Emoji and other pictographic sets

ż
Supplementary plane

PHP Unicode

PHP Unicode

Does not support unicode at a low-level, work-arounds are required

Internally PHP stores as byte strings. PHP6 was going to change all that

Provides functions for working with Unicode/UTF-8 strings

String assignment and concatenation will still work without special consideration

strpos() and strlen() etc. will count bytes, not characters, so use
multibyte aware functions instead…

Programmer must be aware to avoid Mojibake

PHP Unicode - Set Your Charset

Set default_charset in php.ini to “UTF-8”

Specify UTF-8 in your Content-Type header:
header(“Content-Type: text/html; charset=utf-8”);

Set the charset on your PDO connection DSN:
new PDO('mysql:host=your-hostname;dbname=your-db;charset=utf8mb4', …);

PHP Unicode - Set Your Encoding

Explicitly pass “UTF-8” as the encoding parameter to htmlspecialchars() and
htmlentities()

Use mb_internal_encoding() and mb_http_output() at the start of all PHP files to
ensure that PHP considers your strings as UTF-8 and it outputs UTF-8 to the
browser

Save your source files encoded as UTF-8 - without a Byte Order Mark (BOM)

PHP Unicode - Use Multibyte Functions

PHP provides mbstring (mb_*) functions for multi-byte string handling - these
should be used in ALL cases when working with unicode

mb_strlen(), mb_substr(), mb_strpos(), mb_send_mail() etc.

These functions will correctly work on the character level rather than byte level

The iconv functions can be used for converting to/from Unicode encodings such
as UTF-8, as well as detecting encodings of input

PHP Unicode - JSON

json_encode() may break your UTF-8…

Well, by default json_encode() escapes UTF-8 as unicode escape sequences by
default:
json_encode('č') => "\u010d"

As of PHP5.4 you can pass an additional flag called JSON_UNESCAPED_UNICODE:
json_encode('č', JSON_UNESCAPED_UNICODE) => "č"

Note that json_decode will handle either.

PHP Unicode - PHP7

PHP 7 now allows you to specify Unicode codepoints using the \u{XX..} syntax
which will be output as UTF-8:

echo "\u{aa}"; // Can also be specified with leading 0’s eg. \u{0000aa}
=> ª

echo "\u{9999}";
=> 香

PHP7 also includes the Intl extension which includes a lot of great functionality for
working with Unicode normalization and plenty of other
International good-ness.

Database

Databases and Unicode

Every modern database supports Unicode

Implementation differs slightly but most have the concept of CHARSET and
COLLATION

The CHARSET defines how the data is encoded

The COLLATION defines the semantics - sorting and comparison

MySQL

MySQL still defaults to latin1 charset when not specified and latin1_swedish_ci
for the collation - as of 5.7

In MySQL the utf8 charset refers to a 3 byte implementation of of UTF-8, which is
usually not what you want when working with UTF-8

Use utfmb4 - not the utf8 collation or your may have data loss

Each character set has a default collation

MySQL - Unicode charsets

utf8 - UTF-8 encoding using 1-3 bytes per character

utf8mb4 - UTF-8 encoding using 1-4 bytes per char

ucs2 - UCS-2 encoding using 16 bits per character

utf16 - UTF-16 encoding 16 bits per character (like ucs2) but with support for
supplementary characters

utf32 - UTF-32 encoding using 32 bits per character

MySQL Collation

For every CHARSET there will be several collations available: xxx_general_ci,
xxx_bin, xxx_unicode_ci, plus language specific collations; xxx_swedish_ci etc.

The collation used determines how strings are sorted, how strings are compared,
and how indexes are built

The language specific collations such as xxx_swedish_ci

Fo
r E

xa
m

pl
e utf8_unicode_ci supports mappings such as

expansions;

That is... when one character compares as equal to
combinations of other characters.

For example, in German and
some other languages

 ß is equal to ss

MySQL - Which collation?

Operations performed using the xxx_general_ci collation are faster than those for
the xxx_unicode_ci collation but slightly less correct

xxx_bin is even faster, it works solely on code points - without normalization etc.
during comparison

xxx_unicode_ci also supports contractions and ignorable characters

xxx_general_ci is a legacy collation that does not support expansions,
contractions, or ignorable characters:
only one-to-one comparisons between characters.

MySQL - Declaring Charset

Connect to the database using the same encoding (so that there is no mangling
between database and client)

SET NAMES utf8mb4 COLLATE utf8mb4_unicode_ci before you query/insert
into the database

Ensure all your tables and columns are also in the same encoding.
Use DEFAULT CHARSET=utf8mb4

MySQL - Configuration
Update your MySQL configuration file (my.cnf)

[client]

default-character-set = utf8mb4

[mysql]

default-character-set = utf8mb4

[mysqld]

character-set-client-handshake = FALSE

character-set-server = utf8mb4

collation-server = utf8mb4_unicode_ci

You can confirm these changes by issuing the
following query:
SHOW VARIABLES LIKE 'character_set%';

MySQL - Configuration

Note that the client-set-handshake=FALSE

This means that the client handshake will be
ignored, and the server will insist on the character
set that is used during communication.

MySQL - Column storage

varchar(10) column within a utf8mb4 table will use between 1 and 40 bytes for a
non-empty value

char(10) column will always use 40 bytes (pessimistic)

varbinary might show a slight improvement for columns which don’t need locale
side effects - eg. identifiers that don’t need UTF-8 - eg. static values (such as a
status column) are good candidates

MySQL’s named column types (tinytext) etc. refer to byte size

Key length might be a concern

MySQL - String functions

The LENGTH() function returns length in bytes - use CHAR_LENGTH() to get the
number of characters

SELECT CHAR_LENGTH('Ж'), LENGTH('Ж');

CHAR_LENGTH = 1, LENGTH = 2

The other string functions behave as you would expect - they work on the
character level: SUBSTR, CONCAT etc.

PostgreSQL - Installation

For new installs - initialise your database cluster as UTF8:
initdb -E UTF8 … On Debian or Ubuntu that’s: pg_createcluster

The locale you use should match your system UTF-8 locale:

cat /etc/default/locale

File generated by update-locale

LANG="en_US"

LANGUAGE="en_US:"

LC_ALL=en_US.UTF-8

PostgreSQL - Encoding

PostgreSQL defines the encoding for a table in 3 ways:

ENCODING = How the characters are encoded eg. UTF-8

LC_COLLATE = String sort order

LC_CTYPE = Character classification (What is a letter? Its upper-case equivalent?)

PostgreSQL - Database creation

CREATE DATABASE "mydatabase"

 WITH OWNER "somebody"

 ENCODING 'UTF8'

 LC_COLLATE = 'en_US.UTF-8'

 LC_CTYPE = 'en_US.UTF-8'

 TEMPLATE template0;

Notice that the above commands specify copying the template0 database. When
copying any other database, the encoding and locale settings cannot be changed
from those of the source database, because that might result
in corrupt data.

PostgreSQL - Existing databases

Use psql -l to inspect your current database collations:

 Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+-----------+----------+-------------+-------------+-----------------------

 iris | iris | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

 postgres | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

 template0 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/postgres +

 | | | | | postgres=CTc/postgres

 template1 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/postgres +

 | | | | | postgres=CTc/postgres

PostgreSQL - Client

Ensure the client communicates in UTF-8
SET NAMES 'UTF8'; // Same as initialise via PDO

To query the current client encoding:
SHOW client_encoding;

To return to the default encoding:
RESET client_encoding;

PostgreSQL - String functions

Postgres provides the convert function for converting strings between encodings:

convert(string using conversion_name)

convert(string text, [src_encoding name,] dest_encoding name)

Eg.
convert('PostgreSQL' using iso_8859_1_to_utf_8)

convert('text_in_unicode', 'UNICODE', 'LATIN1')

There are many built in conversions. See pgsql docs

HTML

HTML - History

In the early days of HTML (HTML 2.0), the document character set was specified
as ISO-8859-1

HTML 4.0 was extended to support the Universal Character Set (UCS) which
Unicode is basically a superset of

According to the HTML5 standard - all HTML authoring should now use UTF-8

HTML - Declaring Your Character Set

Always declare your charset as UTF-8:

<meta charset="utf-8"> <- shorter, better

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

In HTML5 they’re both the same, so use the shortest one!

Charset declaration should be placed right after the <head> so that
browser can parse the rest of the document correctly

CSS

CSS files may contain Unicode characters (font names, content: “xx”)

The header or the document linking to the CSS will determine the perceived
encoding - so what if a UTF-16 HTML file links to your CSS encoded in UTF-8

Always @charset "UTF-8"; as the first line of your file

HTML - Encoding

Your HTML files should also be encoded in UTF-8 when authoring

If your HTML file is encoded in UTF-16 then the browser can’t read the charset
declaration to know the encoding so it must rely on header or heuristics.

From high to low priority, HTML5 uses the encoding of:
1. User override for charset (browser config)
2. “Content-Type” header from server
3. Document charset declaration
4. Byte Order Mark or detection heuristics (analysis of document)

HTML - Entities

HTML entities are a plain text encoding of a character which can be passed and
stored through plain text mechanisms

Entities can be used regardless of the encoding of the document

Any unicode character can be referenced by its Uncode codepoint via —
or via the hex form —

HTML entities also have named versions such as — - all three will render
the same character - there is a standard set of 252 named
character entities for characters

HTML - Forms

<form> supports accept-charset=”utf-8” attribute

This is only relevant if your document encoding is not already UTF-8

Within a UTF-8 document, the browser will encode user input within a <form> as
UTF-8

Javascript

Javascript

Javascript uses unicode as storage ƶ

All strings are internally stored as UTF-16... or UCS-2 �

Source code (from ECMAscript 3.0) is specified as unicode too ƶ

But many of the string functions respond differently than you would expect �

ES6 provides additional functionality for working with Unicode ʤ

Javascript - Preparation

Make sure your JS files are saved in UTF-8 encoding

.. or only refer to codepoints using escape sequences \uHHHH

Send utf-8 header for your JS files

Also declare your <html> charset as utf-8

Charset attribute within <script> is only necessary if your document encoding is
different or no headers were sent with the JS file:
<script src="/js/stuff.min.js" charset="utf-8"></script>

Javascript - Working with Unicode

XMLHttpRequest URL encoded form-data will always be sent as UTF-8 encoding
as per the HTML5 spec.

The response encoding will be determined by the Content-Type header received
(containing a charset declaration), or via a BOM, or via “sniffing” the content
and/or via the current document encoding

Javascript - Working with Unicode

The way Javascript handles unicode can sometimes be surprising

JavaScript strings are represented using UTF-16 code units

Any character within the BMP (U+0000 to U+FFFF) can be represented using a
single code unit, others require two units

'☘'.length;
= 1 // Looks good!

'☘' == '\u2618';
= true // You can use unicode escapes

Javascript - Character storage

In Javascript characters such as emoji require two 16-bit code units. These
continuous code units are often called surrogate pairs

And Javascript string and character functions actually work on code units rather
than characters:

'Ȋ'.length = 2 // Returns the number of 16-bit code units - not chars

The string above actually contains two code units:

'Ȋ' == '\uD83D\uDCA9'

Javascript - Some problems

'Ȋ'.split('').reverse().join(''); // JS4EVA

= '��' // Reversed the code units to: '\uDCA9\uD83D'

var str = 'Ȋ☘';
for (var i = 0; i < str.length; i++) {

 console.log(str[i]);

}

= �

= �

= ☘

Javascript - Solutions

Javascript can handle Unicode just fine… as long as you don’t touch anything

If you don’t try to work on the character level, you may not encounter problems

Maybe don’t use characters outside of the BMP

Definitely don’t try sorting your strings...

And don’t even bother comparing two de-normalized strings...

...

… ES6!

Javascript - ES6 ˓

ES6 brings several long-needed unicode improvements to Javascript

Unicode codepoint escapes \u{1F680} - so we work with the entire codepoint
rather than the individual code units \uD83D\uDE80

String.prototype.codePointAt() and String.fromCodePoint() for converting
between characters ˓ and Unicode code points \u{1F680}

String.prototype.normalize() for normalising a string (ie. for comparing/sorting)

String iterator and spread operator ...

Javascript - ES6 string iterables

The string iterator in ES6 splits strings along codepoint boundaries

for (let ch of 'x\uD83D\uDE80y') {

 console.log(ch.length)

}

// ch.length = 1

// ch.length = 2

// ch.length = 1

Javascript - ES6 spread operator

The spread operator allows us to easily split a string into an array over its
codepoints:

let chars = [...'abc'] // ['a', 'b', 'c']

We can use this to correctly count the characters in a string:

let chars = [...'Ž�❤'] // ['Ž', '�', '❤']

chars.length // 3

Javascript - ES6 spread operator

Your string may have been constructed using unicode characters, unicode
codepoint sequence, or UTF-16 unicode sequences:

[...'õ ym elots \u{1F984} a \uD83D\uDCA9 ho'].reverse().join('')

 // oh Ȋ a � stole my õ

Regardless, the spread operator splits individual codepoints into an array, and
therefore can be used with reverse() etc.

Javascript - ES6 getCodePointAt

String.prototype.getCodePointAt(pos) returns the decimal value for a
Unicode character within a string:

const chars = '�A' // String containing unicorn char and letter ‘A’
chars.codePointAt(0) // 129412 -- decimal value

'\\u{' + chars.codePointAt(0).toString(16).toUpperCase() + '}'

 // \u{1F984} -- The unicode escape sequence

BUT ...
chars.codePointAt(1) // 56708 -- not 65!

Position is still based on 16-bit code units - use spread etc!

Javascript - ES6 fromCodePoint

Converting from a codepoint to character is easy in ES6 too:

String.fromCodePoint(65); // "A" "\u0041"

String.fromCodePoint(0x404); // "Ɣ" "\u0404"

String.fromCodePoint(0x2F804); // "�" "\uD83E\uDD84"

String.fromCodePoint(129412); // "�" "\uD83E\uDD84"

let allTheUnicorns = "�"

allTheUnicorns += String.fromCodePoint(129412)

allTheUnicorns += String.fromCodePoint(0x2F804)

// ��� - a beautiful tricorn!

Closing Comments

Jodie Dunlop
Senior Backend Dev
Rex Software Pty Ltd
twitter.com/seriouslyjodie

https://twitter.com/seriouslyjodie

Just use UTF-8

UTF-8 all the things

In your headers, in your encodings, in your database, and through UTF-8 aware
functions

Think about your input, how you’re handling it, how you’re storing it, how you’re
displaying it, and how you manipulate it

It’s easy! Unicode is normally only a problem when one or more pieces of your
stack or request cycle do not use the same encoding

