Unicode and U

... things a web developer might want to know

Jodie Dunlop

Senior Backend Dev

Rex Software Pty Ltd
twitter.com/seriouslyjodie

REX

https://twitter.com/seriouslyjodie

What is Unicode? O a;

Defines a unique code for every character in every U+0D27 | U+0915 | U+0284
language

Irrelevant of platform, program, or implementation
Punctuation marks, diacritics, symbols, arrows, and emoji are also defined

Scripts include the European alphabetic scripts, Middle Eastern right-to-left
scripts, and many scripts of Asia \

SUCH AS THE ENGLISH
LANGVAGE!

Unicode represents
a character in an
abstract way

and leaves the visual rendering (size,
shape, font, or style) to other software,
such as a web browser

128,172

In all, the Unicode Standard, Version 9.0 provides codes for 128,172 characters
from the world's alphabets, ideograph sets, and symbol collections.

More characters are usually added each release.

0690

0680

06ED

06F0

Example code block

2t C]le]lT A K5 KN E¥ EJ B3 BN BN B B Arabic v
s s . R % | Open in separate page
> 5 J 2 H1] b 5 SRR IR I AIEA IR
Range: 0600— 06FF
i Sl Sllaolld|l S|l S| 2]]5]]3 & Number of characters: 256
type: alphabet
e B S S 3' J J J 3 9 5 3 5 = & Languages: arabic, persian, kurd
3 ~ ~ ~) s . [3 h A
2 3 3) 3 3 3 S|l G 3 e oaal
4 & & b g - o '
¢l ==l " ®)
14 r e L v
v ﬂ [4 3 5
N Ed Ed B IR IR IR IEAIEZ I RAIERIERIE

Source: unicode-table.com

Example code block

Geometric Shapes v

Source: unicode-table.com

Open in separate page

Number of characters: 96

Example character

Radioactive Sign U+2622

Technical information
Unicode number

HTML-code

Block Miscellaneous Symbols

Set Most popular characters

Source: unicode-table.com

Before the web ruined everything

Life was simple - we usually didn't care about other languages

We had ASCII and if we needed some fancy characters we'd use 1ISO-8859-1 or
ANSI. Other characters? Other codepages!

Each character could fit nicely into 1 byte

No complex encoding, or mapping, a string is just a series of bytes which contain
characters

Japanese would be Japan’s problem, not ours...

ASCI|

7 bits = 128 glorious characters used most frequently in US-English

We didn’t need no british pound symbol

Character operations are simple. Uppercase? Just switch the 6th bit (genius)

1 byte mapping makes memory access simple (‘meow!)
A TN

o)

Emoji? We call them emoticonsandyoucan _) ¢

. . . . (C/ L SO O G
combine them in ways unimaginable (Y1)))

St >

ASCI|

Character

Decimal

Binary

Hex

A 65 01000001 Ox41
a 97 01100001 Ox61
9 57 00111001 0x39

000
001
002
003
004
005
006
007
008
009
010

011 ¢

012
013
014
015

O %% ¢+ €d O

016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

| @ =g

— —> &

4pt 1

032
033
034
035
036
037
038
039
040
041
042
043
044
045

046 .

047

— 0
T

-
-

+ = - = @7 00 U

-

048
049
050
051
52
053
054
055
056
057
058
059
060
06l
062
063

W w000 &= N = O

=) v ” A s =m

064
065
066
067
068
069
070
071
072
D73
074
075
076
077
078
079

O=Z I "RagHIDoHHEHO OO R

080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095

> S, N 30 ™o d

096 °

097
098
099
100
101
102
103
104
105
106
107
108
109
110
111

O @2 PN H oD o L0 0 L

112
1135
114
115
116
147
118
119
120
121
122
123
124
125
126
127

O ¢~ —~N~N Mg J4C cwurr,070T

ISO-8859-1 (aka Latin1, cP819, 1IBM819 ...)

Add 1 bit to ASCII and you get an 8-bit, single-byte encoding that
provides space for 128 additional characters

The british pound symbol is finally in! Plus 95 other symbols |
Operations are still simple - working with a 1 byte to 1 character mapping

It's not quite the same as Windows code page 1252 - more on that later

As of August 2016, 6.0% of all web sites claim to use ISO 8859-1

Additional characters from 1S0O-8859-1

NBSP
00A0
160

0080
176

ooco
192

00D0
208

00E0
224

00F0
240

00A1
161

I+

0081
177

oocl
193

00D1
209

00E1
225

00F1
241

00B2
178

oocz
194

00D2
210

0OE2
226

00F2
242

£

00A3
163

00B3
179

goc3
195

00D3
211

00E3
227

00F3
243

o

00A4d
164

00B4
180

ooca
196

00D4
212

00E4
228

00F4
244

¥

00A5
165

00B5
181

0ocs
197

00D5
213

00E5
229

00F5
245

00A6
166

00B6
182

ooce
198

oope
214

00E6
230

00F6
246

§

00AT
167

00B7
183

ooc7
199

00D7
215

00E7
231

Q0F7
247

00AB
168

00BB
184

oocse
200

00D8
216

00EB
232

0OF8
248

©

00A9
169

00B9
185

00cCy
201

00D9
217

00E9
233

00F9
249

ooca
202

00DA
218

00EA
234

00FA
250

00BB
187

0ocB
203

00DB
219

00EB
235

00FB
251

O00AE
174

O0BE
190

00CE
206

00AF
175

Q0BF
191

00CF
207

00DF
223

00EF
239

OOFF
255

1ISO-8859-?

Actually there are a bunch of ISO-8859 definitions, not just ISO-8859-1

They all swap out the same range of characters (decimal 160-255)

Latin-1 (Western European languages)

Latin-2 (Non-Cyrillic Central and Eastern European languages)
Latin-3 (Southern European languages and Esperanto)

Latin-5 (Turkish)

Latin-6 (Northern European and Baltic languages)

8859-5 (Cyrillic)
8859-6 (Arabic)
8859-7 (Greek)
8859-8 (Hebrew) ...

Windows Codepage 1252

Uses the unused range of ISO-8859-1 (DECIMAL 128-159) to provide additional
characters

Sometimes referred to as “ANSI” — —

Gives you that nice dash that'’s just a little bit

longer than a plain old hyphen DEC:150 DEC: 45

1252 is basically the reason we needed to add
“Paste from Word” to our web applications

Windows Codepage 1252

P | q | r s t u v W X y | z { | } | = DEL

0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 007A 0078 007¢C 007D 007E 007F
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
€ ; f & 2 t t Z %o s ¢ ® Z
20AC 201A 0192 201E 2026 2020 2021 02C6 2030 0160 2039 0152 017D
128 130 131 132 133 134 135 136 137 138 139 140 142
‘ ' “ " . 25 - e ™ 3 > ® Z Y
2018 2019 201c 201D 2022 2013 2014 02DC 2122 0161 2032 0153 017E 0178
145 146 147 148 149 150 151 152 153 154 155 156 158 159
NBSP i ¢ £ H ¥ i § - © a « = SHY ® -
00R0 00A1 00A2 00A3 00A4 00AS 0026 Q0AT7 00AB 00A9 00AA 00AB 00AC 00AD 00AE Q0AF

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

Before Unicode

Before unicode there were 100’s of different encoding systems - issues

No single encoding could contain enough characters (eg. European Union spans
many encodings)

The encoding systems would also conflict with each other. Eg. Two different
characters at the same address -OR- the same character defined in two different

places

Unsuitable for East-Asian languages requiring 1000’s codepoints

Does not cater for additional symbols

Back to Unicode

Unicode

So Unicode gives us a 21bit space U+0000..U+10FFFF to provide allocation for
over a million codepoints

Unicode only specifies the codepoint or the “number” to reference that character,
how that codepoint is represented on disk or in memory is a whole other story

The Unicode Space

Unicode allows for ~1.1million codepoints to be allocated across 17 “planes”
Each plane - 65,536 continuous characters (16 bits)

Basic Multilingual Plane (BMP) is the first plane and contains the character
assignments for most of the modern languages and common symbols

There are 3 supplementary planes, plus private use blocks across multiple planes

The other planes are sometimes referred to as: Astral Planes

The Unicode Space

Plane 0

Plane 1

Plane 2

Planes 3-13

Plane 14

Planes 15-16

Basic Multilingual Plane
(BMP)

Supplementary Multilingual
Plane (SMP)

Supplementary Ideographic
Plane

Unassigned

Supplement-ary
Special-purpose Plane
(SSP)

Supplement-ary Private Use
Area planes (SPUA)

U+0000 - U+FFFF

U+10000 - U+1FFFF

U+20000 - U+2FFFF

U+30000 - U+DFFFF

U+EO0000 — U+EFFFF

U+F0000 + U+10FFFF

BMP - Basic Multilingual Plane

The first plane plane 0 is called the Basic Multilingual Plane or BMP
It specifies the codepoint range U+0000 -> U+FFFF

It contains all the most commonly used symbols, english scripts, and many
modern languages

Most of the time you don't need any code points outside of the BMP especially for
text documents in English. Just like any other Unicode plane, it groups about 65
thousand symbols

4
N

Encoding Formats

Unicode Transformation Format (UTF)

UTF specifies the encoding for a codepoint (eg. codepoint -> memory/storage)

UTF-8, UTF-16, and UTF-32 all provide different ways to encode a codepoint into
between 1 and 4 bytes

Only these encodings are part of the Unicode Standard - but there are many more

All interchangeable - no loss when converting between each

UTF-8

Variable width encoding from 1-4 bytes

Designed to be compatible with ASCII - the first 128 characters correspond 1:1
with ASCII

Therefore ASCII is also completely valid UTF-8
UTF-8 does not require BOM although it is sometimes present

Most common on the web, HTML5 mandates its use

Bits

First

Last

D code point sttt D 1
1 7 U+0000 U+007F | Oxxxxxxx
2 11 U+0080 U+07FF | 110xxxxx 1 OXXXXXX
3 16 U+0800 U+FFFF 1110xxxx 1 OXXXXXX 1 OXXXXXX
4 21 U+10000 U+10FFFF 11110xxx 1 OXXXXXX 1 OXXXXXX 1 OXXXXXX
1-4 bytes - first byte for characters in the ASCII range

UTF-8 Binary Encoding

Working with UTF-8 at the Byte Level

You have a single byte character if the first bit is a 0 (zero)
You know you have the first byte in a sequence if the first two bits are 11

If you have a byte that starts with 10, you will need to seek up to 3 bytes
backwards to find the start of the sequence

With this knowledge we can randomly seek and read 1 byte anywhere in a UTF-8
encoded file and know how to proceed

UTF-8 encoding of ASCII characters

Character Decimal Binary Hex
A 65 01000001 0x41
U+0041 -
A 97 01100001 0x61
U+0061 ®
2 57 00111001 0x39
U+0039 x
/£ £0054 11000011 0xC3
U+006C 10000110 0x86

UTF-16

Variable width encoding that uses either 16 bits or 32 bits for all codepoints

All of the characters in the Basic Multilingual Plane (BMP) are encoded as a single
16-bit unit - thus most characters of most modern languages only use one code
unit

Other planes require two 16-bit units (32 bits) and we call this “surrogate pairs”

Used by Windows and Java for string/char storage

UTF-16

Characters U+0800 through U+FFFF use three bytes in UTF-8, but only two in
UTF-16

As a result, text in (for example) Chinese, Japanese or Hindi will take more space
in UTF-8 if there are more of these characters than there are ASCII characters

Comes in 2 forms UTF-16LE and UTF-16BE (Little Endian or Big Endian)

Not compatible with ASCII

UTF-32

32 bit (4 byte) encoding... 4 bytes for every character no matter which character
Fixed width makes codepoints directly indexable (Constant time operation)
Used by Linux and OSX for w_char (wide char) storage

Uses more memory than the other standards, but easier to address

Comes in 2 forms UTF-32LE and UTF-32BE (Little Endian or Big Endian)

Not compatible with ASCII

GAN ENCODE EVERY CHARACTER
INTHE WORLD IN 4 BYTES

Bad luck
UTF-32

na
e

. IN |
AS LITTLE AS 1 BYTE

imgfiip.com

Little Endian
Big Endian

No,
THEY'RE NATIVE AMERICAN'S

Little Endian & Big Endian Variations

UTF-16 and UTF-32 may be in LE (Little Endian) or BE (Big Endian) encoding
Big Endian means most significant byte first (normal)

Little Endian means least significant byte first (reverse)

Some computers are better at one or the other

Byte order mark (BOM) “can” be used to indicate LE or BE
... or specify the encoding through some other means

You must know which order it is encoded in!

Recap

UTF-8 is most common on the web, and potentially uses the least storage (1 byte)

UTF-16 is either 2 or 4 bytes, used by Java and Windows, and uses less storage
than UTF-8 when dealing with certain scripts. All characters in the BMP are 1 unit

UTF-8 and UTF-32 are used by Linux and various Unix systems
UTF-32 always uses 4 bytes but can be addressed more easily due to fixed width

The conversions between all of them are algorithmically based,
fast and lossless

ASCII UTF-8 UTF-16 UTF-32

Always
byte l _4 bytes 2 _4 bytes bytes
Simple to use Flexible encoding length Better outside the BMP Good for internal storage
Plain old text o Single Encoding 0 Supports LE & BE ° Supports LE & BE
° Constant Access Variable Access Variable Access 0 Constant Access
@ HTML Support © HTML Support © HTML Support HTML Support

° Recommended by W3C

° Customise your extra bits

Emoji ° Emoji ° Emoji ° Emoji

128 characters upgrade to iso-

8859-1 available 1.1 million characters 1.1 million characters 1.1 million characters

4
N

Byte Order Mark (BOM)

Byte Order Mark (BOM) U+FEFF

An optional Unicode character which appears at the start of some text streams
Indicates that it a stream is in Unicode
Indicates the encoding (eg. UTF-8, UTF-16, UTF-32)

Indicates endianness (byte order)

If you specify your encoding through some other means then a BOM
IS not necessary

Sometimes causes issues

Byte Order Mark (BOM) U+FEFF

The exact bytes comprising the BOM will be whatever
the Unicode character U+FEFF is converted into by
that transformation format

The BOM can be used to “sniff” the format of the file
or stream

Bytes

Encoding Form

00 00 FE FF UTF-32, big-endian
FF FE 00 00 UTF-32, little-endian
FE FF UTF-16, big-endian
FF FE UTF-16, little-endian
EF BB BF UTF-8

If present in UTF-8 the BOM will always be the 3 bytes: EF BB BF

UTF-8 does not require a BOM and UTF-8 should always
ignore the BOM

4
N

Unicode Equivalence

And normalization and stuff ...

Unicode Equivalence

Unicode sometimes has multiple representations for the same character

Ultimately they all represent the “same” character, but with different codepoints -
we call them equivalent

Sometimes these additional codepoints exist for historical reasons

Unicode provides rules around normalisation so that they can be transformed
and/or treated as the same character (eg. when comparing or alphabetising)

For Example

U+00C5 (A\) LATIN CAPITAL LETTER A WITH RING ABOVE
U218 (A) ANGSTROM SIGN

U+0041 (A) LATIN CAPITAL LETTER A + U+030A () COMBINING RING ABOVE
All of the above are considered canonically equivalent

Each of these examples represent the same character

1. The first is the “precomposed” form
2. The second is an alternative codepoint called “Angstrom”
3. The last combines a character with a diactritic

http://unicode.org/cldr/utility/character.jsp?a=00C5
http://unicode.org/cldr/utility/character.jsp?a=212B
http://unicode.org/cldr/utility/character.jsp?a=0041
http://unicode.org/cldr/utility/character.jsp?a=030A

Normalisation

There are 4 forms of normalisation:

NFD

Normalization Form Canonical
Decomposition

Characters are decomposed by canonical
equivalence, and multiple combining
characters are arranged in a specific order.

Normalization Form Compatibility
Decomposition

NFC Characters are decomposed and then
Normalization Form Canonical Composition |[recomposed by canonical equivalence.
NEKD Characters are decomposed by compatibility,

and multiple combining characters are
arranged in a specific order.

NFKC

Normalization Form Compatibility
Composition

Characters are decomposed by compatibility,
then recomposed by canonical equivalence.

Fonts

The Unicode standard does not specify or create the font (typeface)

A font is a collection of graphical shapes (glyphs) that may include
representations of some of the unicode codepoints.

Since a single TTF or OTF font has a hard limit of 65535 there is no single font that
can cover the 1.1 million unicode characters - a family of fonts needs to be used

Fonts - Unicode in the browser

If the fonts referenced in the CSS do not cover a particular Unicode character then
the browser will use fallback fonts

By the specifications, browsers should display a character if there is any font in the system that contains it
Font fallback doesn’t always occur nicely (looking at you IE)

Using a font that has good coverage for your application is the ideal scenario

Or use SVG or images for particular instances

Fonts - Coverage

Google Noto Font - hitps://www.google.com/get/noto/
Provides massive coverage (goal is to cover all scripts) including emoji (android
style) and many scripts

DejaVu - http://dejavu-fonts.org/wiki/Main_Page
Good coverage of most common Unicode symbols and common scripts

GNU - Unifont - hitp://czyborra.com/unifont/ (Pixel font)

30,000+ characters in pixel format

https://www.google.com/get/noto/
http://dejavu-fonts.org/wiki/Main_Page
http://czyborra.com/unifont/

Fonts - Coverage

Wikipedia provide coverage tables for the various commonly installed fonts (Arial
etc.) which indicates which block ranges are included:

https://en.wikipedia.org/wiki/Unicode font#0000-077F

https://en.wikipedia.org/wiki/Unicode_font#0000-077F

Emoji

U+1F4A9 U+1F40D U+1F602

Emoji History

Originated in Japanese mobile phones in 1990’s
In 2010 the Unicode consortium integrated emoji into Unicode

There are over 1700 emoji including flags, keycaps, and modifier sequences

The word “emqji”, in fact, is just as Japanese as it sounds. It’s taken
from the Japanese words “e” (“picture”), and ‘moji” (“character”).

Emoji Definition

They are assigned code points just like other Unicode characters
Depicted as black and white pictographs within the Unicode standard

As with all Unicode characters, graphical representation is up to the software

Emoji are not the same as emoticons... but some emoticons include unicode
characters ©_3

Emoji Examples

Actual implementations
differ within various
software

Ne Code

1 U+1F923

Ne Code

2 U+1F924

Ne Code

3/U+1F920

4 U+1F921

5/U+1F925

Ne Code

6/U+1F922

7/U+1F927

=
=

® O € GF ®F B

Emoji Skin Tones

In 2015 (Unicode 8.0) skin tones based on the Fitzpatrick scale were introduced

Many emoji such as people could be assigned up to 5 different shades by
combining a modifier character

When an emoji codepoint is present, if it is immediately followed by one of the
following codepoints: U+1F3FB, U+1F3FC, U+1F3FD, U+1F3FE, U+1F3FF - then if
the software supports it it should display the skin tone variation

Otherwise the patch colour block will be displayed individually
after the emoji character

Emoji Prince - U+1F934

18/U+1F934 : | = -
U+1F3FE . ' v
19 U+1F934 = | | -
U+1F3FF . ' v

14 U+1F934 XS Voo ¥ - “
O o " ‘v ﬂ
= - * - -
15 U+1F934 - | a | Ay | - '
U+1F3FB H LU v o! 6
— = - _——
16 U+1F934 | | o s - | s | e
U+1F3FC . e v e
17 U+1F934 - = & | == -
U+1F3FD - ' o0 v v! W
— -

s 18 3 E

The skin tone modifiers for the Prince (U+1F934) emoji character

Emoji

As seen from the example characters their codepoint is beyond U+FFFF
Emoiji reside in the Supplementary Multilingual Plane (SMP) U+10000 - U+1FFFF

Since they are not available within the BMP (Basic Multilingual Plane) they will
take at least 2 bytes to encode in any of the UTF forms

Plane 1, the Supplementary Multilingual Plane (SMP), contains historic scripts such as Linear B, Egyptian
hieroglyphs, and cuneiform scripts; historic and modern musical notation; mathematical alphanumerics;

Emoji and other pictographic sets

THERE AINT NO SNAKES ON THIS

P

PHP Unicode

PHP Unicode

Does not support unicode at a low-level, work-arounds are required

Internally PHP stores as byte strings. PHP6 was going to change all that
Provides functions for working with Unicode/UTF-8 strings

String assignment and concatenation will still work without special consideration

strpos () and strlen () etc. will count bytes, not characters, so use
multibyte aware functions instead...

Programmer must be aware to avoid Mojibake

PHP Unicode - Set Your Charset

Set default_charset in php.ini to “UTF-8"

Specify UTF-8 in your Content-Type header:
header(“Content-Type: text/html; charset=utf-8”);

Set the charset on your PDO connection DSN:
new PDO('mysqgl:host=your-hostname;dbname=your-db;charset=utf8mb4’', ...);

PHP Unicode - Set Your Encoding

Explicitly pass “UTF-8" as the encoding parameter to htmlspecialchars() and
htmlentities()

Use mb_internal_encoding() and mb_http_output() at the start of all PHP files to
ensure that PHP considers your strings as UTF-8 and it outputs UTF-8 to the

browser

Save your source files encoded as UTF-8 - without a Byte Order Mark (BOM)

PHP Unicode - Use Multibyte Functions

PHP provides mbstring (mb_*) functions for multi-byte string handling - these
should be used in ALL cases when working with unicode

mb_strlen(), mb_substr(), mb_strpos(), mb_send mail() etc.

These functions will correctly work on the character level rather than byte level

The iconv functions can be used for converting to/from Unicode encodings such
as UTF-8, as well as detecting encodings of input

PHP Unicode - JSON

json_encode() may break your UTF-8...

Well, by default json_encode() escapes UTF-8 as unicode escape sequences by
default:

json_encode('¢') => "\uolied"

As of PHP5.4 you can pass an additional flag called 3SoON_UNESCAPED_UNICODE :
json_encode('C', JSON_UNESCAPED UNICODE) => "¢"

Note that json_decode will handle either.

PHP Unicode - PHP7

PHP 7 now allows you to specify Unicode codepoints using the \u{XX..} syntax
which will be output as UTF-8:

echo "\u{aa}"; // Can also be specified with leading ©’s eg. \u{Q@0@aa}
=> 2a

echo "\u{9999}";

=>EE—<

PHP7 also includes the Intl extension which includes a lot of great functionality for
working with Unicode normalization and plenty of other
International good-ness.

Database

Databases and Unicode

Every modern database supports Unicode

Implementation differs slightly but most have the concept of CHARSET and
COLLATION

The CHARSET defines how the data is encoded

The COLLATION defines the semantics - sorting and comparison

MySQL
MySQL still defaults to 1atinl charset when not specified and latin1_swedish_ci

for the collation - as of 5.7

In MySQL the utf8 charset refers to a 3 byte implementation of of UTF-8, which is
usually not what you want when working with UTF-8

Use utfmb4 - not the utf8 collation or your may have data loss

Each character set has a default collation

MySQL - Unicode charsets

utf8 - UTF-8 encoding using 1-3 bytes per character
utf8mb4 - UTF-8 encoding using 1-4 bytes per char
ucs2 - UCS-2 encoding using 16 bits per character

utf16 - UTF-16 encoding 16 bits per character (like ucs2) but with support for
supplementary characters

utf32 - UTF-32 encoding using 32 bits per character

MySQL Collation

For every CHARSET there will be several collations available: xxx_general_ci,
xxx_bin, xxx_unicode_ci, plus language specific collations; xxx_swedish_ci etc.

The collation used determines how strings are sorted, how strings are compared,
and how indexes are built

The language specific collations such as xxx_swedish_ci

For Example

utf8_unicode_ci supports mappings such as
expansions;

That is... when one character compares as equal to
combinations of other characters.

For example, in German and
some other languages

} is equal to ss

MySQL - Which collation?
Operations performed using the xxx_general_ci collation are faster than those for
the xxx_unicode_ci collation but slightly less correct

xxx_bin is even faster, it works solely on code points - without normalization etc.
during comparison

Xxx_unicode_ci also supports contractions and ignorable characters

xxx_general_ci is a legacy collation that does not support expansions,
contractions, or ignorable characters:
only one-to-one comparisons between characters.

MySQL - Declaring Charset

Connect to the database using the same encoding (so that there is no mangling
between database and client)

SET NAMES utf8mb4 COLLATE utf8mb4 unicode_ci before you query/insert
into the database

Ensure all your tables and columns are also in the same encoding.
Use DEFAULT CHARSET=utf8mb4

MySQL - Configuration

Update your MySQL configuration file (my.cnf)

[client]
default-character-set = utf8mb4
[mysql]
default-character-set = utf8mb4

[mysqld]
character-set-client-handshake = FALSE
character-set-server = utf8mb4
collation-server = utf8mb4 unicode ci

You can confirm these changes by issuing the
following query:
SHOW VARIABLES LIKE 'character_set%';

MySQL - Configuration

Note that the client-set-handshake=FALSE

This means that the client handshake will be
ignored, and the server will insist on the character
set that is used during communication.

MySQL - Column storage

varchar(10) column within a utf8mb4 table will use between 1 and 40 bytes for a
non-empty value

char(10) column will always use 40 bytes (pessimistic)

varbinary might show a slight improvement for columns which don't need locale
side effects - eg. identifiers that don't need UTF-8 - eg. static values (such as a
status column) are good candidates

MySQL’s named column types (tinytext) etc. refer to byte size

Key length might be a concern

MySQL - String functions

The LENGTH() function returns length in bytes - use CHAR_LENGTH() to get the
number of characters

SELECT CHAR_LENGTH('X'), LENGTH('X');
CHAR LENGTH = 1, LENGTH = 2

The other string functions behave as you would expect - they work on the
character level: SUBSTR, CONCAT etc.

PostgreSQL - Installation

For new installs - initialise your database cluster as UTF8:
initdb -E UTF8 ... On Debian or Ubuntu that’s: pg_createcluster

The locale you use should match your system UTF-8 locale:

cat /etc/default/locale

File generated by update-locale
LANG="en_US"
LANGUAGE="en_US:"
LC_ALL=en_US.UTF-8

PostgreSQL - Encoding

PostgreSQL defines the encoding for a table in 3 ways:
ENCODING = How the characters are encoded eg. UTF-8

LC_COLLATE = String sort order

LC_CTYPE = Character classification (What is a letter? Its upper-case equivalent?)

PostgreSQL - Database creation

CREATE DATABASE "mydatabase”
WITH OWNER "somebody"
ENCODING 'UTFS8'

LC_COLLATE = 'en_US.UTF-8'
LC_CTYPE = 'en_US.UTF-8'
TEMPLATE template®;

Notice that the above commands specify copying the templateO database. When
copying any other database, the encoding and locale settings cannot be changed

from those of the source database, because that might result
in corrupt data.

PostgreSQL - Existing databases

Use psql - to inspect your current database collations:

iris
postgres
template® |

templatel |

iris
postgres
postgres

postgres

en_US.UTF-8 |
en_US.UTF-8 |

en_US.UTF-8 |

|
+
| en_US.UTF-8 |
|
|
|
|
|

en_US.UTF-8 |
en_US.UTF-8 |
en_US.UTF-8 |

en_US.UTF-8 |

Access privileges

=c/postgres +
postgres=CTc/postgres
=c/postgres +

postgres=CTc/postgres

PostgreSQL - Client

Ensure the client communicates in UTF-8
SET NAMES 'UTF8'; // Same as initialise via PDO

To query the current client encoding:
SHOW client_encoding;

To return to the default encoding:
RESET client_encoding;

PostgreSQL - String functions

Postgres provides the convert function for converting strings between encodings:
convert(string using conversion_name)

convert(string text, [src_encoding name,] dest encoding name)

Eg.
convert('PostgreSQL' using iso 8859 1 to utf 8)
convert('text_in_unicode', 'UNICODE', 'LATIN1')

There are many built in conversions. See pgsqgl docs

HTML

HTML - History
In the early days of HTML (HTML 2.0), the document character set was specified
as ISO-8859-1

HTML 4.0 was extended to support the Universal Character Set (UCS) which
Unicode is basically a superset of

According to the HTMLS5 standard - all HTML authoring should now use UTF-8

HTML - Declaring Your Character Set

Always declare your charset as UTF-8:

<meta charset="utf-8"> <- shorter, better

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

In HTMLS they're both the same, so use the shortest one!

Charset declaration should be placed right after the <head> so tha
browser can parse the rest of the document correctly

CSS

CSS files may contain Unicode characters (font names, content: “xx”)

The header or the document linking to the CSS will determine the perceived
encoding - so what if a UTF-16 HTML file links to your CSS encoded in UTF-8

Always @charset "UTF-8"; as the first line of your file

HTML - Encoding

Your HTML files should also be encoded in UTF-8 when authoring

If your HTML file is encoded in UTF-16 then the browser can'’t read the charset
declaration to know the encoding so it must rely on header or heuristics.

From high to low priority, HTML5 uses the encoding of:
1. User override for charset (browser config)

2. “Content-Type” header from server

3. Document charset declaration

4. Byte Order Mark or detection heuristics (analysis of document

HTML - Entities

HTML entities are a plain text encoding of a character which can be passed and
stored through plain text mechanisms

Entities can be used regardless of the encoding of the document

Any unicode character can be referenced by its Uncode codepoint via —
or via the hex form —

HTML entities also have named versions such as — - all three will render
the same character - there is a standard set of 252 named
character entities for characters

HTML - Forms

<form> supports accept-charset="utf-8” attribute

This is only relevant if your document encoding is not already UTF-8

Within a UTF-8 document, the browser will encode user input within a <form> as
UTF-8

Javascript

Javascript

Javascript uses unicode as storage £
All strings are internally stored as UTF-16... or UCS-2 [
Source code (from ECMAscript 3.0) is specified as unicode too £

But many of the string functions respond differently than you would expect [

ES6 provides additional functionality for working with Unicode &

Javascript - Preparation

Make sure your JS files are saved in UTF-8 encoding

.. or only refer to codepoints using escape sequences \uHHHH
Send utf-8 header for your JS files

Also declare your <html> charset as utf-8

Charset attribute within <script> is only necessary if your document encoding is

different or no headers were sent with the JS file:
<script src="/js/stuff.min.js" charset="utf-8"></script>

Javascript - Working with Unicode

XMLHttpRequest URL encoded form-data will always be sent as UTF-8 encoding
as per the HTMLS5 spec.

The response encoding will be determined by the Content-Type header received
(containing a charset declaration), or via a BOM, or via “sniffing” the content
and/or via the current document encoding

Javascript - Working with Unicode

The way Javascript handles unicode can sometimes be surprising
JavaScript strings are represented using UTF-16 code units

Any character within the BMP (U+0000 to U+FFFF) can be represented using a
single code unit, others require two units

"' length;
=1 // Looks good!
"' == '\u2618’;

= true // You can use unicode escapes

Javascript - Character storage

In Javascript characters such as emoji require two 16-bit code units. These
continuous code units are often called surrogate pairs

And Javascript string and character functions actually work on code units rather
than characters:

"&'.length = 2 // Returns the number of 16-bit code units - not chars

The string above actually contains two code units:

"&' == "\uD83D\uDCA9'

Javascript - Some problems

'&'.split('"').reverse().join("'"'); // JS4AEVA
= '@€©®' // Reversed the code units to: '\uDCA9\uDS83D'

var str = "'&¥';
for (var i = @0; 1 < str.length; i++) {
console.log(str[i]);

}
= @
= @

oY

Javascript - Solutions

Javascript can handle Unicode just fine... as long as you don't touch anything
If you don't try to work on the character level, you may not encounter problems
Maybe don’t use characters outside of the BMP

Definitely don't try sorting your strings...

And don't even bother comparing two de-normalized strings...

Javascript - ES6 %

ES6 brings several long-needed unicode improvements to Javascript

Unicode codepoint escapes \u{1F680} - so we work with the entire codepoint
rather than the individual code units \uD83D\uDE80

String.prototype.codePointAt() and String.fromCodePoint() for converting
between characters % and Unicode code points \u{1F680}

String.prototype.normalize() for normalising a string (ie. for comparing/sorting)

String iterator and spread operator ...

Javascript - ES6 string iterables

The string iterator in ES6 splits strings along codepoint boundaries

for (let ch of 'x\uD83D\uDE8@y') {
console.log(ch.length)

}
// ch.length = 1
// ch.length = 2

// ch.length

Javascript - ES6 spread operator

The spread operator allows us to easily split a string into an array over its
codepoints:

let chars = [..."abc"] // ['a', 'b', 'c']

We can use this to correctly count the characters in a string:

let chars = [..."%%[®'] // ['%', '[I', '®']
chars.length // 3

Javascript - ES6 spread operator

Your string may have been constructed using unicode characters, unicode
codepoint sequence, or UTF-16 unicode sequences:

[...'"®% ym elots \u{1F984} a \uD83D\uDCA9 ho'].reverse().join("'")

// oh & a [l stole my &

Regardless, the spread operator splits individual codepoints into an array, and
therefore can be used with reverse() etc.

Javascript - ES6 getCodePointAt

String.prototype.getCodePointAt(pos) returns the decimal value for a
Unicode character within a string:

const chars = '[A' // String containing unicorn char and letter ‘A’
chars.codePointAt(@0) // 129412 -- decimal value
"\\u{' + chars.codePointAt(9).toString(16).toUpperCase() + '}

// \u{1lF984} -- The unicode escape sequence

BUT ...
chars.codePointAt(1) // 56708 -- not 65!

Position is still based on 16-bit code units - use spread etc!

Javascript - ES6 fromCodePoint

Converting from a codepoint to character is easy in ES6 too:

String.fromCodePoint(65); // "A" "\uoo41"
String.fromCodePoint (0x404); // "Y" "\uoe404"
String.fromCodePoint(©x2F804); // "[" "\uD83E\uDD84"
String.fromCodePoint(129412); // "0O" "\uD83E\uDD84"

let allTheUnicorns = "[]"
allTheUnicorns += String.fromCodePoint(129412)
allTheUnicorns += String.fromCodePoint(@x2F804)
// 000 - a beautiful tricorn!

Closing Comments

Jodie Dunlop

Senior Backend Dev

Rex Software Pty Ltd
twitter.com/seriouslyjodie

a
&

https://twitter.com/seriouslyjodie

Just use UTF-8

UTF-8 all the things

In your headers, in your encodings, in your database, and through UTF-8 aware
functions

Think about your input, how you're handling it, how you're storing it, how you're
displaying it, and how you manipulate it

It's easy! Unicode is normally only a problem when one or more pieces of your
stack or request cycle do not use the same encoding

